

Sainsbury Wellcome Centre

November 4, 2019

Cerebellar learning

Prof. Tom Otis t.otis@ucl.ac.uk

- Brief overview of cerebellum
- Behavioural aspects of cerebellar associative learning
- Some theory and a circuit mechanism
- Cellular mechanisms

A simplified view of motor system output

The cerebellum functions as a rapid, corrective feedback loop, smoothing and coordinating movements.

from Fig. 15-1, Purves

Fast feedback loops for coordinating movement

Cerebellar lesions cause: nystagmus ataxia dysdiadochokinesia dysmetria intention tremor

also, deficits in *motor learning*

What kinds of information does the cerebellum receive?

- somatosensory
- visual
- auditory
- vestibular
- proprioceptive
- efferent copy

From *Control of Body and Mind*, Gulick Hygiene Series, 1908

Nerves are slow relative to movement speed coordination requires *prediction*

conduction velocity of many nerve fibers is ~10 m/s

some humans run at ~ 10 m/s

Usain Bolt, 100 m WR: 9.58 s

To adapt quickly, control systems must anticipate

i.e. a 'forward model'

Ohyama et al., 2003

Behavioural aspects of cerebellar associative learning

Classical or Pavlovian conditioning

A form of associative learning in which a conditioned stimulus (CS) is linked to an unconditioned stimulus/response (US/UR).

After learning the CS elicits a conditioned response (CR) when delivered by itself.

Ivan Pavlov Nobel Prize, 1904

Paradigms for classical conditioning:

Eyelid movements during a classical conditioning experiment

Zigmond et al., 1999

Mouse eyeblink data

Heiney et al, J. Neurosci., 2014

Timing of learned responses dictated by CS-US timing during training

differently timed puffs during training

responses after training

from Mauk et al.,1998

Learning is robust for CS-US intervals of 100 ms to 1 second

Perrett et al., *J. Neurosci.* 13:1708, 1993

Lesions and pharmacological inactivation of cerebellar cortex cause improperly timed learned responses after eyeblink conditioning.

Lesions of cerebellar cortex (anterior lobe)

GABA_A receptor antagonist (picrotoxin) injected into interpositus nucleus

Mauk et al.,1998

Extinction requires the cortex

Perrett and Mauk, J Neurosci. 15:2074, 1995

Cellular anatomy of cerebellum

How does Purkinje neuron firing affect movement?

Purkinje neurons are inhibitory, thus when they slow or stop firing their targets are excited

Rapid, short latency arm movements triggered by brief PN inhibition

- Archearhodopsin (inhibitory opsin) expressed in PNs
- Optic fiber delivering 532nm laser light to forelimb region of cerebellar cortex

Circuit hypotheses for cerebellar associative learning

Two inputs to Purkinje cells transmit distinct types of information

Motor output

Mossy Fiber (MF) to Parallel Fiber (PF) system weak & highly convergent - the sensorimotor context

Climbing Fiber (CF) from the inferior olive strong, one CF per PC - the instructive signal

D. DiGregorio, Inst. Pasteur

CFs generate a unique, cell-wide signal

Kreitzer et al, 2000

- Simple spikes are typical action potentials.
- Complex spikes occur in response to climbing fiber excitation.

Marr's theory for how the cerebellar cortex contributes to learning actions

- Each PC can learn to recognise a number of contexts provided by the MF- GC pathway
- Olivary cells correspond to *elemental movements;* every action is composed of such elemental movements and actions are defined by patterns of olivary firing
- Parallel fiber synapses are strengthened upon coactivation of olivary inputs to PCs (Hebbian plasticity)

David Marr, 1970

Adapted from Ito in Computational Theories and Their Implementation in the Brain, Vaina & Passingham (Eds.)

Eyeblink conditioning circuitry

Evidence for the anatomical substrates of CS and US

- Lesions of the mossy fibers prevent learning (McCormick & Thompson, '84)
- Stimulation of the mossy fibers (pons) can substitute for the CS (Steinmetz et al, '89)
- Lesions of the olive (climbing fibers) prevent learning
- Stimulation of olive can substitute for the US (Mauk et al, '86)
- Inactivation of the climbing fibers extinguishes learning

What does the CF 'teach' the Purkinje neuron?

Garcia, Steele, and Mauk, J. Neurosci. 19:10940, 1999

The Journal of Neuroscience, March 7, 2007 • 27(10):2493-2502 • 2493

Acquisition, Extinction, and Reacquisition of a Cerebellar **Cortical Memory Trace** Dan-Anders Jirenhed, Fredrik Bengtsson, and Germund Hesslow

Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden

Pairing PC excitation with a tone leads to robust learned movements

Chr2 training, individual mice

Summary: sites of plasticity

PNs in flocculus are directionally tuned to smooth pursuit eye movements

Yang & Lisberger, Ext. Fig. 1, Nature 2014

Smooth pursuit learning task

Medina & Lisberger, Nat. Neurosci. 2008

Smooth pursuit learning task

- task shows single trial learning
- complex spikes predict learning on a trial by trial basis

Complex spike signals predict single trial learning

a

Random-direction paradigm

Yang & Lisberger, Nature 2014

Complex spikes indicate errors or unexpected events

- Baseline rate of complex spikes ~ 1 / s
- Rate of complex spikes increases with errors in a novel task
- Complex spikes to unexpected events
- Rate of complex spikes decreases after learning corrects errors in performance

Ohmae & Medina, Nat. Neurosci., 2015

Complex spikes to unexpected events habituate unless they are predictive

Ohmae & Medina, Nat. Neurosci., 2015

Cellular mechanisms of cerebellar LTD

Long term depression (LTD) of PF synapses

AMPA receptors are removed at PF synapses

The direction of plasticity is determined by the whether CF is stimulated

Coesmans et al., Neuron 44:691, 2004

LTD is synapse specific & requires an rise in [Ca²⁺]_i

Safo and Regehr, Neuron 48:647, 2005

The direction of plasticity is determined by the amount of calcium

Coesmans et al., Neuron 44:691, 2004

An inverse [Ca²⁺]_i dependence in cerebellum?

Schaffer-collateral synapse

parallel fiber synapse

Coesmans et al., Neuron 44:691, 2004

mGluR1 function is required for LTD

Ichise et al., Science 288:1832, 2000

Coincidence detection mechanisms

Endocytosis of GluR2-containing AMPARs is the basis for LTD

Chung et al., Science 300:1751, 2003

Backup, extra slides

Similarities between classical eyeblink conditioning (EC) and plasticity of the vestibulo-ocular reflex (VOR)

Mauk, 1997

Some numbers: mossy fibers and climbing fibers

- A mossy fiber excites ~30 granule cells.
- A granule cell is excited by 4-6 mossy fibers.

- A parallel fiber excites ~300 PNs.
- A PN is excited by ~100,000 parallel fibers.
- A climbing fiber excites ~10 PNs.
- A PN is excited by 1 climbing fiber.

Reciprocal disynaptic connections between motor areas of cerebellum and neocortex

Reciprocal connections between cerebellum and <u>all</u> of neocortex

Buckner, *Neuron* 80:807-815, 2013; see also work by Strick and colleagues, and Schmahmann on cerebellar cognitive syndrome & "*dysmetria of thought*"

VOR learning

Boyden et al., 2004

Which pathways carry the information critical for learning?

Mauk, 1997